条件付き正規分布について証明していきたいと思います。証明は行列変量正規分布で行いますが、多変量正規分布の証明は証明中で\(n=1\)としたものになります。
条件付き正規分布
\(n\times p\)の行列変量正規分布に従う確率変数を\(X = (X_{1}\ X_{2})\sim N_{p}(M,\ U,\ V)\)と分割します。ただし、\(X_{1}\)は\(n\times p_{1}\)の確率変数、\(X_{2}\)は\(n\times p_{2}\)の確率変数であり\(p_{1}+p_{2}=p\)が成り立っています。
\(X\)が行列正規分布に従っていることから、\(X_{1}\)と\(X_{2}\)も行列正規分布に従います。よって
X_{1}\sim N_{n\times p_{1}}(M_{1},\ U,\ V_{11}),\ \ X_{2} \sim N_{n\times p_{2}}(M_{2},\ U,\ V_{22})
\end{align}
M=\left( \begin{array}{cc}
M_{1} & M_{2}
\end{array}\right),\ \ V = \left( \begin{array}{cc}
V_{11} & V_{12}\\
V_{21} & V_{22}
\end{array}\right),\ \ V_{ij}はp_{i}\times p_{j}の行列です
\end{align}
このとき、次のような関係が成り立ちます。
特に\(n=1\)のとき、行列変量正規分布は多変量正規分布となることから、この条件付き正規分布も多変量正規分布だった場合の条件付き正規分布に従うことがわかります。
※行列変量正規分布、多変量正規分布については以下のリンクからお願いします。
証明
行列\(E\)を次のように定義します。
E = \left(\begin{array}{cc}
I_{p_{1}} & O \\
-V_{21}V_{11}^{-1} & I_{p_{2}}
\end{array}\right)
\end{align}
この行列について、行列式が\(|E|=1\)となり、逆行列が
E^{-1} = \left(\begin{array}{cc}
I_{p_{1}} & O \\
V_{21}V_{11}^{-1} & I_{p_{2}}
\end{array}\right)
\end{align}
f(x) &= \frac{1}{(2\pi)^{\frac{1}{2}np}|U|^{\frac{1}{2}p}|V|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr} \left\{ U^{-1}(X-M)V^{-1}\,{}^{T}\!(X-M) \right\} \right] \\
&= \frac{1}{(2\pi)^{\frac{1}{2}np}|U|^{\frac{1}{2}p}|V|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr} \left\{ U^{-1}(X-M)\ {}^{T}\!E\ {}^{T}\!E^{-1}V^{-1}E^{-1}E\,{}^{T}\!(X-M) \right\} \right] \\
&= \frac{1}{(2\pi)^{\frac{1}{2}np}|U|^{\frac{1}{2}p}|V|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr} \left\{ U^{-1}\{ (X-M)\ {}^{T}\!E\} ( {}^{T}\!EVE)^{-1}\ {}^{T}\{ (X-M)\ {}^{T}\!E \} \right\} \right] \\
\end{align}
まず指数部分について変形していきます。
EV\ {}^{T}E &= \left(\begin{array}{cc}
I_{p_{1}} & O \\
-V_{21}V_{11}^{-1} & I_{p_{2}}
\end{array}\right)\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)\left(\begin{array}{cc}
I_{p_{1}} & -V_{11}^{-1}V_{12} \\
O & I_{p_{2}}
\end{array}\right) \\
&= \left(\begin{array}{cc}
V_{11} & V_{12} \\
O & -V_{21}V_{11}^{-1}V_{12}+V_{22}
\end{array}\right)\left(\begin{array}{cc}
I_{p_{1}} & -V_{11}^{-1}V_{12} \\
O & I_{p_{2}}
\end{array}\right) \\
&= \left(\begin{array}{cc}
V_{11} & O \\
O & -V_{21}V_{11}^{-1}V_{12}+V_{22}
\end{array}\right)
\end{align}
(X-M)\ {}^{T}\!E &= \left(\begin{array}{cc}
X_{1}-M_{1} & X_{2}-M_{2}
\end{array}\right)\left(\begin{array}{cc}
I_{p_{1}} & -V_{11}^{-1}V_{12} \\
O & I_{p_{2}}
\end{array}\right) \\
&= \left(\begin{array}{cc}
X_{1}-M_{1} & X_{2}-M_{2}^{\prime}
\end{array}\right)
\end{align}
\{ (X-M)\ {}^{T}\!E\} ( {}^{T}\!EVE)^{-1}\ {}^{T}\{ (X-M)\ {}^{T}\!E \} &= \left(\begin{array}{cc}
X_{1}-M_{1} & X_{2}-M_{2}
\end{array}\right)\left(\begin{array}{cc}
V_{11} & O \\
O & -V_{21}V_{11}^{-1}V_{12}+V_{22}
\end{array}\right)^{-1}\left(\begin{array}{c}
{}^{T}(X_{1}-M_{1}) \\
{}^{T}(X_{2}-M_{2})
\end{array}\right) \\
&= (X_{1}-M_{1})V_{11}^{-1}\ {}^{T}\!(X_{1}-M_{1}) + (X_{2}-M_{2}^{\prime})(V_{22}-V_{21}V_{11}^{-1}V_{12})^{-1}\ {}^{T}\!(X_{2}-M_{2}^{\prime})
\end{align}
|U|^{\frac{1}{2}p}|V|^{\frac{1}{2}n} &= |U|^{\frac{1}{2}p}|EV\ {}^{T}\!E|^{\frac{1}{2}n} \\
&= |U|^{\frac{1}{2}(p_{1}+p_{2})}( |V_{11}||V_{22}-V_{21}V_{11}^{-1}V_{12}| )^{\frac{1}{2}n} \\
&= |U|^{\frac{1}{2}p_{1}}|V_{11}|^{n}\times |U|^{\frac{1}{2}p_{2}}|V_{22}-V_{21}V_{11}^{-1}V_{12}|^{\frac{1}{2}n}
\end{align}
f(x) &= \frac{1}{(2\pi)^{\frac{1}{2}np_{1}}|U|^{\frac{1}{2}p_{1}}|V_{11}|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr}\left\{ U^{-1}(X_{1}-M_{1})V_{11}^{-1}\ {}^{T}\!(X_{1}-M_{1}) \right\} \right] \\
&\ \ \times \frac{1}{(2\pi)^{\frac{1}{2}np_{2}}|U|^{\frac{1}{2}p_{2}}|V_{22}-V_{21}V_{11}^{-1}V_{12}|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr}\left\{ U^{-1}(X_{2}-M_{2}^{\prime})(V_{22}-V_{21}V_{11}^{-1}V_{12})^{-1}\ {}^{T}\!(X_{2}-M_{2}^{\prime}) \right\} \right] \\
\end{align}
f(X_{2}|X_{1}) &= \frac{1}{(2\pi)^{\frac{1}{2}np_{2}}|U|^{\frac{1}{2}p_{2}}|V_{22}-V_{21}V_{11}^{-1}V_{12}|^{\frac{1}{2}n}}\exp\left[ -\frac{1}{2}\mathrm{tr}\left\{ U^{-1}(X_{2}-M_{2}^{\prime})(V_{22}-V_{21}V_{11}^{-1}V_{12})^{-1}\ {}^{T}\!(X_{2}-M_{2}^{\prime}) \right\} \right]
\end{align}
□